| Andrew A. Bryant Chief Scientist, Marmot Recovery Foundation updated: January 21, 2001 |
Contents: | |
| Purpose What's a Vancouver Island marmot? History Prehistoric distribution Historical distribution Current distribution Population trends |
Habitat
characteristics Reproduction Hibernation Dispersal and metapopulations Causes of mortality So where do we go from here? Literature cited |
Purpose
The purpose of this paper is to serve as a "road-map" to the primary scientific literature concerning Vancouver Island Marmots (Marmota vancouverensis).
What's a Vancouver Island marmot?
| The
Vancouver Island marmot is is a housecat-sized ground
squirrel that is endemic to Vancouver Island, British
Columbia (Nagorsen 1987). It is the only member of the
genus Marmota that occurs there. Five
other marmot species live in North America (the woodchuck
M. monax, hoary marmot M. caligata,
yellow-bellied marmot M. flaviventris, Olympic
marmot M. olympus and Brower's marmot |
Marmota
vancouverensis is a "good species" on the
basis of karotype (Rausch and Rausch 1971),
cranial-morphometric characteristics (Hoffmann et al.
1979), and reproductive isolation from hoary and Olympic
marmots on the North American mainland. Vancouver Island marmots differ from other species in fur colour (Nagorsen 1987), behavior (Heard 1977, Blumstein et al. 2001) and genetics (Kruckenhauser et al. 1999, Steppan et al. 1999). |
Current distribution (1979-present)
In 1979, the B.C. Ministry of Environment, Lands and Parks began sponsoring population counts and searches for M. vancouverensis. Initial counts were conducted by non-government personnel and volunteers. Counts made since 1982 were carried out by government personnel or academic researchers. Bryant (1998) summarized recent results.
Since 1979, marmots or fresh burrows were found at 47 sites on 15 mountains. Reproduction was observed at 35 sites on 14 mountains. With a single exception, all colonies confirmed as active since 1979 were located within 5 adjacent watersheds on south-central Vancouver Island. The exceptional area is on Mount Washington near Comox, an area separated from other known colonies by 100 km.
Figure 1:
Active (purple) and inactive (yellow) location records for M. vancouverensis.
(Click on the small map to see more detail)
Marmots have disappeared from several areas on Vancouver Island, particularly in the northern extremes of their historic range.
The detailed map is adapted from Bryant and Janz (1996)
Population trends
Despite differences in count effort from year to year, data are adequate to estimate recent population trends. Marmots expanded during the early 1980s into recently clearcut habitats above 700 m in elevation. At least 10 sites were eventually colonized. Most colonizations occurred within 10 years of logging and within 1 km of existing natural colonies (Bryant and Janz 1996).
In recent years marmots declined precipitously, both in numbers and in the incidence of occupied habitats. Populations in natural habitats apparently declined steadily after the early 1980s. Populations in clearcuts "crashed" after 1994 (Bryant 1998).
The 1998 population probably comprised fewer than 100 individuals, divided more-or-less equally among natural meadows and clearcuts.
![]()
Figure 2:
Population trends in M. vancouverensis. Probable marmot numbers were estimated by applying a correction factor to the actual number counted.
Updated from Bryant (1998).
Social structure
Vancouver Island marmots live in colonies comprised of one or more families (Bryant 1990). Families normally contain an adult male, one or more adult females and a variable number of sub-adults, yearlings and young-of-the-year (Heard 1977). The size and number of families varies between colonies and years, and this can produce dramatic fluctuations in population size.
Heard (1977) suggested that M. vancouverensis is monogamous. Milko (1984) predicted some degree of polygyny on the basis of vegetation resources. Bryant (1996a) documented several cases in whish single males apparently sired multiple litters, but that single male:single female groups were much more common.
Reproduction
Mating probably occurs below ground in the first few weeks after emergence from hibernation, as occurs in other marmots (Barash 1989). Gestation is thought to be about 30 days and pups are born hairless in late May or early June (Nagorsen 1987). Pups first emerge from their burrows in very late June or early July. Data for 43 litters from 1987-1998 averaged 3.3 pups. Litters of 3 or 4 were most common, and litters of 2, 5 or 6 pups occurred infrequently.
Females may breed in their third year, but most do not breed until age 4 or 5. A few females reproduced in consecutive years. Some females were quite successful, reaching the age of 8 or 9 and producing 10-15 pups over her lifetime (Bryant 1998).
Hibernation
Vancouver Island marmots hibernate from mid-September until late April or early May. The active season is relatively consistent among years, although tracks have been seen as early as April 17th, and animals have been seen aboveground as late as October 18th. Radio-telemetry suggests that marmots hibernate as family groups, and often re-use hibernacula in subsequent years.
Hibernacula can be identified either by grass and mud "plugs" found at tunnel entrances in late autumn, or by emergence tunnels through the snowpack in May or early June.
![]()
In general, Vancouver Island marmots appear to select hibernacula which are covered during winter by deep snowpack (Bryant 1990).
Dispersal and metapopulation ecology
Pups remain near their natal burrow for their first year and hibernate with the mother (Bryant 1996a). Yearlings generally expand their movements but almost inevitably return to hibernate with their mother a second time. Some "teen-age" marmots leave home in search of a new territory. Dispersal records are scarce, but it appears likely that M. vancouverensis generally disperse when reach the age of 2 or 3 years.
Adults that survive to be older than this become quite sedentary and do not disperse (Bryant 1998).
Both males and females can disperse, but only a fraction of animals (perhaps 30%) actually do. Most individuals adopt the alternative strategy, which is to stay put and "take over the family farm". Dispersing marmots can make impressive movements. Ear-tagged marmots moved distances up to 10 km. Records of solitary marmots in unusual locations suggest that even longer movements (>25 km) may sometimes occur.
The importance of dispersal and recolonization may be exaggerated for M. vancouverensis because of their small colony sizes (Bryant and Janz 1996).
![]() |
Figure
3: Dispersal and metapopulations. Metapopulations are sub-divided populations in which the constituent sub-populations occupy discrete habitat patches in an otherwise inhospitable landscape. Individual colonies suffer extinctions so that at any time some patches are unoccupied. Dispersal is the crucial "glue" that allows recolonization of unoccupied habitat patches or "rescue" of colonies that are doing poorly. |
Conclusions: where do we go from here?
Caughley and Gunn (1996) offered a straightforward model for managing endangered species. First, determine whether populations are declining or whether other evidence suggests that a problem exists. Second, learn about the ecology of the organism and use the accumulated knowledge to test hypotheses about possible causal factors. Finally, use the results to reverse the factors that are causing the problem. It is not yet clear why marmots disappeared from parts of Vancouver Island north of Alberni Inlet. Changes in long-term regional snowfall patterns, hunting by aboriginal peoples, or increased abundance of natural predators may all have played a role (Nagorsen et al. 1996).
It is also possible that landscape connectivity may have changed. For example, tree invasion may have occurred at important "stepping-stone" colonies, such as occurred in other mountain ranges in the Pacific Northwest (Rochefort et al. 1994). Similarly, construction of the Buttle Lake reservoir in Strathcona Provincial Park may have influenced dispersal and metapopulation dynamics (Bryant 1998). South of Alberni Inlet, landscape changes due to forestry appear to be the principal cause of recent marmot population dynamics. Logging reduced the ability of marmots to re-colonize or "rescue" isolated natural colonies by the simple mechanism of creating large amounts of nearby alternative habitat in which dispersers could settle (Bryant 1998).
...continued at below left...Because of reduced survival, marmots living in clearcuts produce fewer than half the number of potential dispersers than did their counterparts in natural meadows (Bryant 1998). Probably the most important impact of forestry was to concentrate marmots within a small geographic area, thereby making individuals more vulnerable to predators and disease. The relative importance of various mortality factors remains unclear. In natural habitats, disappearances were uniformly distributed throughout summer, suggesting a constant mortality factor such as predation. In clearcuts, most animals disappeared after late summer, suggesting death during hibernation (Bryant 1998).
Further research is required, particularly in the broad areas of nutrition and hibernation (e.g., Thorp et al. 1994). More work is also needed to identify potential reintroduction habitats on Vancouver Island, and to test for the possibility of systematic environmental change either through tree invasion or more subtle vegetation change in natural sub-alpine meadows (e.g., Walker et al. 1993). With a population numbering fewer that 100 animals, Vancouver Island marmots must be considered as one of North America's most critically endangered mammals. Only by increasing both their numbers and distribution can the future of this engaging rodent be secured. For this reason the Recovery Plan emphasizes captive-breeding combined with marmot reintroductions to formerly occupied sites (Janz et al. in press).
Literature cited
| Barash,
D.P. 1989. Marmots: social behavior and ecology.
Stanford University Press (Stanford, CA). 360 pp. Blumstein, D.T., J.C. Daniels and A.A. Bryant. 2001. Antipredator behavior of Vancouver Island marmots: using congeners to evaluate abilities of a critically endangered mammal. Ethology. 107: 1-14. Bryant, A.A. 1998. Metapopulation ecology of Vancouver Island marmots (Marmota vancouverensis). Ph.D. dissertation, University of Victoria (Victoria, BC). 125 pp. Bryant, A.A. 1996a. Reproduction and persistence of Vancouver Island Marmots (Marmota vancouverensis) in natural and logged habitats. Canadian Journal of Zoology. 74: 678-687. Bryant, A.A. 1996b. Demography of Vancouver Island Marmots (Marmota vancouverensis) in natural and clearcut environments. Pages 157-168 in LeBerre, M., R. Ramousse and L. Le Guelte (Editors): Biodiversity in Marmots. International Marmot Network (Moscow-Lyon). Bryant, A.A. 1990. Genetic variability and minimum viable populations in the Vancouver Island marmot (Marmota vancouverensis). M.E.Des. Thesis, University of Calgary (Calgary, Alta.). 101 pp. Bryant, A.A., H.M. Schwantje and N.I. deWith. In press. Disease and unsuccessful reintroduction of Vancouver Island marmots (Marmota vancouverensis). Proceedings, 3rd International Congress on Genus Marmota (Cheboksary, Russia, 25-30 August 1997). Bryant, A.A., and D.W. Janz. 1996. Distribution and abundance of Vancouver Island Marmots (Marmota vancouverensis). Canadian Journal of Zoology. 74: 667-677. Caughley, G., and A. Gunn. 1996. Conservation Biology in Theory and Practice. Blackwell (Cambridge, MA). 459 pp. Heard, D.C. 1977. The behaviour of Vancouver Island marmots (Marmota vancouverensis). M.Sc. Thesis, University of British Columbia (Vancouver, BC). 129 pp. Hoffmann, R.S., J.W. Koeppl and C.F. Nadler. 1979. The relationships of the amphiberingian marmots (Mammalia: sciuridae). Occasional Papers, Museum of Natural History. University of Kansas (Lawrence, KA). 83: 1-56. Janz, D.W., A.A. Bryant, N.K. Dawe, H. Schwantje, B. Harper, D. Nagorsen, D. Doyle, M. deLaronde, D. Fraser, D. Lindsay, S. Leigh-Spencer, R. McLaughlin and R. Simmons. In press. Revised Recovery Plan for the Vancouver Island Marmot (1998). Recovery of Nationally Endangered Wildlife Committee, Ottawa. Janz, D., Blumensaat, C., Dawe, N.K., Harper, B., Leigh-Spencer, S., Munro, W., and Nagorsen, D. 1994. National Recovery Plan for the Vancouver Island Marmot. Report No. 10. Recovery of Nationally Endangered Wildlife Committee, Ottawa. Kruckenhauser, L., W. Pinsker, E. Haring and W. Arnold. 1999. Marmot phylogeny revisited: molecular evidence for a diphyletic origin of sociality. Journal of Zoology, Systematics and Evolutionary Research. 37: 49-56. back to Science Pages |
Martell,
A.M. and R.J. Milko. 1986. Seasonal diets of
Vancouver Island marmots. Canadian Field-Naturalist. 100:
241-245. Milko, R.J., and A.M. Bell. 1985. Subalpine meadow vegetation of south central Vancouver Island. Canadian Journal of Botany. 64: 815-821. Milko, R.J. 1984. Vegetation and foraging ecology of the Vancouver Island marmot (Marmota vancouverensis). M.Sc. Thesis, University of Victoria (Victoria, BC). 127 pp. Munro, W.T., D.W. Janz, V. Heinsalu and G.W. Smith. 1985. The Vancouver Island Marmot: status and management plan. B.C. Ministry of Environment Wildlife Bulletin B-39. (Victoria, BC). 24 pp. Nagorsen, D.W. 1987. Marmota vancouverensis. Mammalian Species. 270:1-5. Nagorsen, D.W, G. Keddie and T. Luszcz. 1996. Vancouver Island marmot bones from subalpine caves: archaeological and biological significance. Occasional Paper #4. B.C. Ministry of Environment, Lands and Parks (Victoria, BC). 58 pp. Rausch, R.L. and V.R. Rausch. 1971. The somatic chromosomes of some North American marmots. Extrait de Mammalia. 35:85-101. Rochefort, R.M., R.L. Little, A. Woodward, and D.L. Peterson. 1994. Changes in the tr ee-line distribution in western North America: a review of climatic and other factors. The Holocene. 4: 89-100. Steppan, S.J., M.R. Akhverdyan, E.A. Lyapunova, D.G. Fraser, N.N. Vorontsov, R.S. Hoffmann, and M.J. Braun. 1999. Molecular phylogeny of the marmots (Rodentia: Sciuridae): Tests of evolutionary and biogeographic hypotheses. Systematic Biology. 48: 715-734. Swarth, H.S. 1912. Report on a collection of birds and mammals from Vancouver Island. University of California Publications in Zoology. 10:1-124. Swarth, H.S. 1911. Two new species of marmots from Northwestern America. University of California Publications in Zoology. 7:201-204. Thorp, C.R., P.K. Ram and G.L. Florant. 1994. Diet alters metabolic rate in the Yellow-bellied marmot (Marmota flaviventris ) during hibernation. Physiological Zoology. 67: 1213-1229. Walker, D.A., J.C. Halfpenny, M.D. Walker and C.A. Wessman. 1993. Long-term studies of snow-vegetation interactions. Bioscience. 43: 287-301. |